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Abstract: We treat symmetry as a continuous property rather than a discrete "yes or no" one. Here we generalize the 
approach developed for symmetry elements (Part 1: J. Am. Chem. Soc. 1992,114,7843-7851) to any symmetry group 
in two and three dimensions. Using the Continuous Symmetry Measure (CSM) method, it is possible to evaluate 
quantitatively how much of any symmetry exists in a nonsymmetric configuration; what is the nearest symmetry group 
of any given configuration; and how the symmetrized shapes, with respect to any symmetry group, look. The CSM 
approach is first presented in a practical easy-to-implement set of rules, which are later proven in a rigorous mathematical 
layout. Most of our examples concentrate on tetrahedral structures because of their key importance in chemistry. 
Thus, we show how to evaluate the amount of tetrahedricity (Td) existing in nonsymmetric tetrahedra; the amount of 
other symmetries they contain; and the continuous symmetry changes in fluctuating, vibrating, and rotating tetrahedra. 
The tool we developed bears on any physical or chemical process and property which is either governed by symmetry 
considerations or which is describable in terms of changes in symmetry. 

1. Introduction 
Symmetry, as one of the most fruitful working tools of the 

natural sciences, has delt, by definition, with the exact, the perfect, 
the ideal, the flawless. Nature, however, in most of its mani­
festations, cannot be described by these adjectives if symmetry, 
in its present teaching, is taken as a reference of attitude. Except 
for man-made objects, exact symmetries rarely exist: they are 
rare on a molecular scale where vibrations continuously distort 
"ideal" shapes; they are rare on the macromolecular scale where, 
e.g., protein chains usually fold in a nonsymmetric arrangement; 
they are rare at the microscopic range (aggregates, liquid crystals, 
etc.); and they are rarely found in the largest objects of the universe. 
To overcome this dichotomy, reality must be brought into the 
framework of the current language of symmetry by resorting to 
averaging over long time scales or over large assemblies and by 
limiting the study to narrow time windows of observation or to 
shapes of equilibrium state. 

We suggest that the opposite approach be attempted: create 
a symmetry language that is tailored to reality, i.e. to its 
"imperfections" and to its "nonidealities". In Part 1' we presented 
the notion that a natural new symmetry language that fulfills this 
requirement should allow shades of gray, in contradistinction to 
the classical restrictive "black or white" approach. We argue 
that, rather than asking whether or not a given shape has a desired 
(element or group of) symmetry, one is better off asking how 
much of that symmetry exists in that shape and that replacing 
a strict "either-or" language with a simple language that allows 
"in betweens" is bound, in principle, to enrich the information 
content of symmetry analysis. Many specific examples in 
chemistry and material science which may benefit from such an 
approach were detailed in Part 1. Some previous treatments of 
similar problems are, e.g., perturbation analysis in spectroscopy,2 

deviation analysis from specific shapes3 (see Section 4.1), fuzzy-
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set analysis,4 and measures on convex sets.5'6 As will be evident 
below, our approach to the problem of nonideal symmetry is 
quite different,7 being guided by three principles: (1) Nonsym­
metric shapes should not be treated as a perturbation of an ideal 
reference. Such shapes, as well as perfectly symmetric ones, 
should appear on a single continuous scale with no built-in 
hierarchy of subjective ideality. (2) Assessing symmetry should 
be detached from referencing to a specific shape. (3) It should 
be possible to evaluate the symmetry of a given configuration 
with respect to any symmetry group. 

These guidelines are implemented as follows: Given a shape 
composed of np points P, (;' = 1, ..., np) and a symmetry group 
G, the symmetry measure S(G) is a function of the minimal 
displacement the points P, of the shape have to undergo in order 
to acquire (/-symmetry. The tool we developed (Part 1 > and below) 
identifies the points P, of the nearest shape having the desired 
symmetry. Once the nearest P/'s are calculated, a continuous 
symmetry measure is evaluated as 

S'{G)= - V V , -P1W
2 (1) 

(square values are taken so that the function is isotropic, 
continuous, and differentiable). Prior to evaluation, one nor­
malizes the shape by scaling about its center of shape so that the 
maximum distance of any Pt to the center is 1. We thus obtain 
the limits 0 < S '(G) < 1. For convenience, we expand this scale 
by a factor of 100 and express the symmetry measure as 

S(G) = 100(5"(G)) (2) 

Thus, if a shape has the desired symmetry, S(G) = 0. A shape's 
symmetry measure increases as the shape departs from G-sym-
metry and it reaches a maximal value (not necessarily 100—see 
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Figure 1. By how much is the distorted tetrahedron in (a) distant from 
7>symmetry? from C3„-symmetry? fromI>3*-symmetry? (Quantitative 
answers are detailed in the text.) (b) The perfect tetrahedron closest to 
a; (c) the Cjc-symmetric configuration closest to a; (d) the /^-symmetric 
configuration (planar) closest to a. 

Section D of the Appendix). Equations 1 and 2 are general and 
allow one to evaluate the symmetry measure of any shape relative 
to any symmetry group or element. No reference shape is assumed 
at the beginning of the analysis though it is obtained as an end 
outcome. 

In Part 1' we solved the problem for the two basic elements, 
rotation and reflection, mainly for two-dimensional shapes. Here, 
as mentioned above, we extend our treatment to any symmetry 
group, sub-group, or class and to three-dimensions with particular 
reference to the tetrahedron, perhaps the most important three-
dimensional structure in chemistry. Finally we note that at the 
moment we are interested in purely geometrical features. 
However, the shape of mass distribution, charge distribution, or 
any other physical property can be used instead.7 The analysis 
of such real-molecular properties will follow in subsequent reports. 

Our paper is structured as follows: In Section 2 we underline 
the principles of the continuous symmetry measure using some 
basic, two-dimensional cases. In Section 3 we extend the treatment 
to three dimensions and use as examples a variety of tetrahedral 
structural properties, including the basic tetrahedricity measure. 
In Section 4 we provide some examples of the implementation of 
the CSM approach including reanalysis of X-ray data of distorted 
tetrahedra and modeling of dynamical symmetry behavior of 
fluxional, vibrating, and rotating tetrahedra. Rigorous mathe­
matical treatment is then provided in the Appendix. 

2. Underlying Principles of the Continuous Symmetry 
Measure (CSM) 

2.1. Presentation of the Question. Figure la shows a distorted 
tetrahedron representing, perhaps, different substituents on an 
sp3 carbon or a frozen moment in a CX4 vibration mode, etc. We 
seek to answer the following: How much symmetry is there in 
the structure of Figure la with respect to any symmetry group? 
In particular, how much tetrahedricity, i.e. 7>symmetry, does 
it contain? We emphasize a delicate but important point: we 
are seeking to quantify the distance of a given object from a 
symmetry group and not the deviation from a specific prede­
termined object having the desired symmetry. In fact, in most 
cases, it is quite difficult to guess what is the shape closest to the 
object and having the desired symmetry. Thus although it is 
straightforward that the 7>symmetry object closest to Figure la 
is a perfect tetrahedron (Figure lb), it is not easy to guess that 
the closest C3c-symmetric object is the one shown in Figure Ic 
and that the closest D3* object is that shown in Figure Id. The 
continuous symmetry measure (CSM) method is capable of (1) 
quantifying the symmetry measure, in our example of structure 
la with respect to 7>ness, C3„-ness, or D3*-ness or with respect 
to any other symmetry group (Values for Figure 1 are derived 
below.), and (2) providing the specific closest shapes which have 
the desired symmetry. 

2.2. Evaluating the CSM: The Folding/Unfolding Method. 
Our approach is based on the very method of constructing a 

shape which is symmetric with respect to a given symmetry group. 
Let us recall how this is done, and for simplicity of explanation 
we use, for the moment, two-dimensional shapes. As an example, 
we build a two-dimensional (2D) Z)3 shape, i.e. a planar structure 
with one C3 rotational symmetry element and one reflection 
symmetry element a (which is equivalent to C2 in 3D). In 2D 
the rotation is about a point in the plane and the reflection is 
through a line in the plane. The D3 symmetry group may be of 
different orientations and positions (thus the rotation can be about 
any given point in the plane and the reflection about a line of any 
orientation), but a natural choice would be to consider a D3 
symmetry group where the rotation is about the origin and the 
reflection is about one of the axes (the >>-axis). The D3 symmetry 
group is of order 6 with the following elements or operations 
(Figure 2a): 

#! = E = the identity 

g2 = a = reflection about the y-axis 

g} = C3 = rotation about the origin by 2ir/3 radians 

g4 = C3O- = <rC3
2 = rotation by 4x/3 followed by reflection 

g5 = C3
2 = rotation about the origin by 4 T / 3 radians 

g6 = C3
2a = crC2 = rotation by 2x/3 followed by reflection 

Given an arbitrary point Pi in an xy-plane where a is the >>-axis 
and C3 rotates about the origin, a two-dimensional D3-symmetric 
arrangement of points is obtained by applying the six gt operations, 
for instance as follows (Figure 2b): (1) Rotate P\ by 2ir/3 
radians: P3 is obtained. (2) Rotate P\ by 4x/3 radians: P$ is 
obtained. (S)ReAeCtPi5P3, and P5 about they-axis: P2, Ps, and 
P4 are obtained, respectively; a D3-symmetric collection of six 
points is constructed (Figure 2c). Such a structure can be obtained 
by many other orderings of the operations and many other 
orientations and positionings of the symmetry group. However, 
when connected objects, such as molecules, are of interest (in our 
case a hexagon), it is more natural to select that sequence of 
operations which follows the desired connectivity. In our D3 
example, we built the hexagon from Pi by following the order of 
operations as given above which conserves the order along the 
hexagon boundary, i.e. g\ —* gi (Figure 2c). In this report we 
concentrate on envelope (cyclic) connectivities, i.e. polygonal and 
polyhedral configurations. Branched connectivities are discussed 
for an introductory case in Section 3.3 and 4.1 and then in detail 
in Part 4. 

We call the procedure of obtaining a symmetric shape by 
applying a set of operations gi on a point unfolding (in our example, 
a D3 object is unfolded from Pi). One is usually interested in 
unfolding that follows a given connectivity (although the tool we 
develop here is applicable to disconnected assemblies as well). 
The inverse procedure of unfolding is folding: points P2, ..., Pf, 
are folded onto Pi by applying the inverse operations grl. All 
points coallesce onto a single point, P t. Note, however, that if 
points Pi,..., P6 are not perfectly D3-symmetric, the folding results 
in a cluster of points rather than a single point. The folding-
unfolding procedure is the very basis of our method for evaluating 
CSM values with respect to symmetry groups, the idea being to 
minimize the cluster spread. 

2.3. The Basic Case (np = ng). One can try to match various 
shapes with various symmetry groups, but let us first explain the 
folding-unfolding method using the basic case where the number 
of points (np) equals the number of elements in the symmetry 
group (ng) and the connectivity is cyclic. Specifically, we shall 
determine here how much (two-dimensional) D3-symmetry exists 
in the distorted hexagon shown in Figure 3a (we recall that in 
our previous report1 this question was asked for basic symmetry 
elements; i.e., the CSM values of a distorted hexagon were 
evaluated for C2, C3, C6, and <r). The folding-unfolding method 
is performed as follows: (1) Determine the centroid of the object 
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P2=OP1 

. P 6 = C 3 a ? 

C. 
Figure 2. Creating a Z>3-symmetric hexagon: (a) the /^-symmetry group has six elements (see text); (b) applying the six group elements on the point 
Pi; (c) a iVsymmetric hexagon of six points is obtained. 

Figure 3. Measuring £>3-symmetry of a distorted hexagon using the folding-unfolding method: (a) the distorted hexagon; (b) folding the hexagon 
vertices in a—a cluster of points is obtained; (c) averaging the cluster of points in b—a single point is obtained; (d) unfolding the averaged point in 
c—a Z)3-symmetric configuration is obtained. 

(hexagon in our case). Translate the object so that it's centroid 
coincides with the origin, and scale the object so that the maximal 
distance from the origin to any of the vertices is 1 (Figure 3a). 
(2) Translate the symmetry group so that all operations are about 
the origin (i.e. all rotations are about the origin and all reflection 
lines or planes pass through the origin). (3) Select an ordering 
of the operations of the desired symmetry group that follows the 
connectivity of the Pt vertices. In our case, two orderings are 
possible: g\,..., gt as listed above and the reverse, g6,..., gt. We 
proceed with the first and return to the second in step 8. (4) Fold 
the vertices P1,..., P6 by applying to each P,the symmetry operation 
gfK A cluster of folded points Px,..., P6 is obtained (Figure 3_b). 
(Recall that had the object been a Z)3-symmetric one, all P/s 
would coincide.) (5) Average the folded points P1, obtaining the 
average point P\ (Figure 3c): 

i "« i 

V-1 

(6) Unfold the average point Pi by applying on it each of the g, 
operations and obtaining P1: 

Pi = StPi i=l,-,ng 

The ordering g\,..., gt is followed in order to retrieve the original 
connectivity and ordering. A Z>3-symmetric shape is obtained 
(Figure 3d). Note that whereas the nonsymmetric object is scaled 
to 1 (step 1), the symmetrized nearest shape is not necessarily 
so (see Section 4.2 for an example). (7) Calculate S(G) according 
to eq 2. (8) Minimize the S value by repeating the folding-
unfolding procedure (steps 4-7) for all orderings and all 
orientations of the group elements. This step is equivalent to 
finding the best cluster of folded points. In the present case, due 
to the cyclic connectivity, minimization is reduced to the two 
orderings mentioned in step 3. The optimal orientation is given 
analytically (see eq 17 in Section A. 3) and in our case is simply 
0° (i.e. a is about the ,y-axis). See Appendix B for further details. 
The S value obtained by this procedure is the minimal distance 
to the desired symmetry group (the proof is given in Appendix 
A). Applying this procedure, we find that the S(D^) value of the 
hexagon in Figure 3a is 4.89. 

Figure 4. Creating a ^-symmetric configuration of three points: (a) a 
single point P\ is chosen on a symmetry axis; (b) unfolding P\, one obtains 
three pairs of coinciding points having Z>3-symmetry. 

2.4. The Case ng = lnp in Two Dimensions. In the previous 
section we described our method for the basic case in which the 
number of vertices, np, equals ngy the number of elements in the 
symmetry group. However, a common situation is that the object 
under consideration has np < ng and, in particular, ng = lnp with 
/ = 2, 3,.... For instance, the tetrahedral group Tj is composed 
of 24 elements (see below) but, in practice, it is applied in most 
cases to only four vertices, namely to the (distorted) tetrahedron 
vertices. In order to deal with ng = lnp, we first explain the 
process of creating a G-symmetric configuration of points using 
the unfolding process for this case. As an example, we continue 
with £3 but this time with three vertices (/ = 2, np = 3, ng = 6). 
In general, we regard each of the np vertices of an ng = lnp object 
as composed of / coinciding points. Thus, we regard a ZVtriangle 
as a hexagon in which each two vertices coincide. We construct 
such an object by following the general unfolding procedure 
(outlined in Section 2.2 and Figure 2) with one change: the point 
Pi, from which the shape is unfolded, is not in a general position 
(as in Figure 2b) but is selected on a symmetry element, a in our 
case (Figure 4a). It then follows that the points Px and Pi coincide; 
therefore, Pi and Pt, coincide and so do P$ and P6—an equilateral 
triangle is obtained. In general, / is the number of symmetry 
operations which leave P\ in place (in our case / = 2; E and a). 
In effect we divide the elements of group G into np sets of / elements 
each, such that each set G,- contains the elements of the group 
which bring P\ to Pi. Thus Gi is the set of elements which leave 
Pi in place, G^ is the set of elements which, when applied, move 
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Figure 5. Measuring Dj-symmetry of a distorted triangle: (a) the original triangle; (b) folding the points in a—a cluster of points is obtained; (c) 
averaging the cluster of points in b—a single point located on a symmetry axis is obtained; (d) unfolding the averaged point in c—a Dj-symmetric triangle 
is obtained. 

.C,(l) 

C ,(3) 

Figure 6. Symmetry elements of the 7>symmetry group: (a) Four Cj axes, each passing through the origin and a vertex; (b) three C2 axes, each passing 
through the origin and bisecting a pair of opposite edges; (c) six reflection planes, each containing one of the edges and bisecting the opposite edge. 
A single plane (a) is shown. 

P, to P2, etc. In our example (Figure 4b), G, = {g\,g2\, G2 = 

{gi.gj, G3 = \gs,g6\-
Having detailed how a symmetric ng = lnp shape is constructed, 

it is now clear how the folding-unfolding method is applied for 
evaluation of S values in such cases. The procedure is basically 
the same as in Section 2.2 with some modifications, as follows: 
(1) Translate the shape so that its centroid coincides with the 
origin (Figure 5a). (2) Translate the symmetry group to the 
origin (Figure 5a). (3) Select an ordering: (a) Determine / and 
divide G into np sets so that each such G1 contains / elements, (b) 
Select an ordering of the sets G1 of the symmetry group, that 
follows the connectivity of the P1 vertices. (In our example the 
ordering is as mentioned above: G\, G2, Gj). (4) Folding: For 
each vertex P,, apply the inverse of the / elements of the set C1, 
obtaining/folded points P,; withy = 1,...,/. Thus, in our example, 
gc' and g2~

l are applied to P1, obtaining Pn and P,2 (Figure 5b), 
g)-* and g4~' are applied to P2, obtaining P21 and P22, and so on. 
(5) Averaging: Average the ng folded points as in Section 2.2. 
The average point P\ will always lie, in the present case, on one 
or more symmetry axes or planes such that applying any element 
of Gi will leave it in place (for proof, see Appendix A). In our 
case the averaged point, P1, must rest on the reflection line (see 
Figure 5c). To understand this, notice that the six group elements 
can be paired: E, Ct, Cj2 and their reflections: oE, CTC3, CTC3

2. 
On each point P/ we applied a single pair so that the obtained 
points Pn and P12 are related by a (i.e., they are reflections of 
each other) and their average lies on the reflection line. (6) 
Unfolding: Following the unfolding step as described in Section 
2.2., we notice that since P1 remains in place under the application 
of elements in Gi, the unfolded points will align in np sets of / 
points each. Thus in order to obtain np G-symmetric points, it 
suffices to unfold P1 by applying a single element from each set 
G1-. In our case P\ unfolds into three pairs of coinciding points: 
\P\\,P\2\, \h\,P22\, \huhti- By applying, for instance, only gu 

gh and gi, Pi, P2, and P3 are obtained (Figure 5d). (7) Minimize 
over the orderings of the sets G1. (The previous case may be 
considered a specific example of this case where each group G1 

Figure 7. 7>symmetric 24-polyhedron unfolded from the circled vertex. 

consists of a single element gt.) (8) Calculate 5 . 5(Z)3) of the 
triangle in Figure 5a is 9.88. 

3. The Nonsymmetric Tetrahedron 

3.1. Measuring Tetrahedrieity (7"rf). We now apply the method 
described in Section 2.4 to study the symmetry measure of 
nonsymmetric tetrahedra, focusing first on tetrahedricity (Tj) 
and then (Section 3.2) on other symmetries. 7,/symmetry includes 
the following symmetry elements (Figure 6): (1) four C3 axes 
passing through the origin and through each of the four vertices 
(Figure 6a), (2) Three C2 axes passing through the origin, each 
bisecting a pair of opposite edges (Figure 6b), (3) Six reflection 
planes, each containing one of the edges and bisecting the opposite 
edge. For our purpose only one of these reflections (CT) suffices 
(Figure6c). The 24 elements of the Tj symmetry group are thus 
E (the identity), four C3 rotations (denoted C3(I), . . . . C(4)) and 
four C3

2 rotations (denoted C3
2O),... , C3

2(4)), three C2 rotations 
(denoted C2(12), C2(23), C2(31)), and all the elements obtained 
by multiplying these elements by a. As in the D) hexagon case 
discussed in Section 2.3, here too, taking an arbitrary point and 
applying the 24 elements (in any order) will produce a Tj-
symmetric 24-polyhedron (Figure 7). Thus, given 24 points in 
three-dimensional space, we can evaluate the Tj symmetry 
following the algorithms in Section 2.3. (In 3D, however, 
minimization over all orientations of the symmetry group is not 
analytic and an iterative process is used (see Appendix B).) 

file:///huhti-
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Figure 8. Measuring 7>symmetry of a distorted tetrahedron: (a) the 
distorted tetrahedron; (b) folding the tetrahedron in a—a cluster of 24 
points is obtained; (c) averaging the cluster of points in b; (d) unfolding 
the averaged point in c—a 7>symmetric tetrahedron is obtained. 

In most structural analyses, however, the 24-element Tj 
symmetry group is applied on four vertices in 3D, i.e. on the 
vertices of a (possibly) nonsymmetric tetrahedron. This case is 
analogous to the case described in the previous section for a Dy 
symmetry of three points. Here one has ng = 24, np = 4, and / 
= 6. Thus, in order to obtain a 7>symmetric set of four points 
(four coinciding clusters of six points) from a single point Pi, it 
must be positioned so that six symmetry elements of the Tj 
symmetry group leave it in place. Such a point lies on a C3 axis 
and on a a plane (for example point 1 in Figure 6). The six 
elements of the group that leave P\ in place are E, C3, C3

2 (=C3
-1), 

and the three compositions oE, cC3, <rC3
2. When one applies the 

rest of the elements on Pi, one finds that the four sets of elements 
are 

G1 = {E, C3(I), C3
2(l), <r, (TC3(I), (rC3

2(l)} 

G2 = {C3(3), C3
2(4), <7C3

2(2), <rC3(4), C2(12), (rC2(31)} 

G3 = {C3
2(2), C3(4), «7C3(3), <rC3

2(4), C2(31), (rC3(12)} 

G4 = {C3(2), C3
2(3), <rC3(2), <rC3

2(3), C2(23), <rC2(23)} 

Thus unfolding P\ with any one of the elements in G2 will form 
P2, with any of the elements in G3, will form P3, etc., creating a 
symmetric tetrahedron. Again, as in the previous cases, we use 
the construction of a symmetric shape as a guideline for the 
folding-unfolding procedure for evaluating the 7>symmetry of 
any four vertices, as follows: 

Figure 8a shows a distorted tetrahedron. Its centroid coincides 
with the origin, and the maximal distance to a vertex is scaled 
to 1. The four vertices are denoted P1,..., P4, and a certain order 
of the sets G( is selected, say Gi,..., G4, with a certain orientation 
of the 7>symmetry group. Each P, is then folded by applying 
the six elements of the group G1, forming a cluster of 24 points 
(Figure 8b). These are averaged (Figure 8c) and unfolded by 
selecting one element from each G/ set. For example applying 
the group elements E, C3(3), C3

2(2), and C3(2) on Pi, we obtain, 
respectively, points Pi, P2, P3, and P4 (Figure 8d). S is then 
calculated from eq 2 and minimized over the two G,- orderings: 
Gi, G2, G3, G4 and Gi, G2, G4, G3 (the reason for needing only 
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Figure 9. Measuring C3-symmetry of a distorted hexagon: (a) dividing 
the points into two sets—two sets of three points each are obtained (one 
set is marked by the dashed line and the other by the solid line); (b) 
applying the folding-unfolding method to each set separately—two sets 
of perfectly Crsymmetric points (a perfect C3-hexagon) are obtained, 
two orderings for this minimization is described in Appendix 
B.3). For each of the two orderings, one minimizes S over all 
orientations of the symmetry group. (In this case one can reduce 
the dimensionality of the minimization problem: see Appendix 
C.) The S(Ta) values of the four tetrahedra in Figure 1 (Figure 
la = Figure 8a) are 16.87,0.0,4.73, and 25.0 for la, lb, Ic, and 
Id, respectively.8 

3.2. The General Case: Symmetry Content of Nonsymmetric 
Tetrahedra with Respect to Any Symmetry. We return now to 
the opening question: given any number of vertices in space, i.e. 
a general nonsymmetric polygon or polyhedron, what is its 
symmetry measure with respect to any symmetry group, subgroup, 
or class. The generalized approach (which includes the cases of 
Sections 2.3 and 2.4) is to divide the given points into ns sets and 
to apply the folding-unfolding method separately on each set, 
while evaluating the S value over all the given points. For example, 
in the case where np is a multiple of ng (i.e. np = kng), one divides 
the points into ns = k sets of ng points each. On each set one 
performs the folding-unfolding method as described in Section 
2.3. Thus, in Section 2.3 for Z)3 we had ng = 6, np = 6, / = 1, 
and «j = 1; in Section 2.4 (a Z>3-triangle) we had ng = 6, np = 
3, / = 2, and n,— \; and for T4 analysis of tetrahedra (Section 
3.1) ng = 24, np = 4, / = 6, and ns = 1. The general case, however, 
will typically require the division of the np vertices into ns > 1 
vertices subsets, not necessarily of equal size but with (possibly 
different) / integer values for each of these sets. Once the division 
is made, each of the ns subsets is symmetrized with respect to the 
desired symmetry group either according to the ng = np procedure 
(Section 2.3) or according to the ng = lnp procedure (Section 
2.4). Since each of the subsets is symmetrized with respect to 
the same symmetry group, one obtains a symmetrization of the 
full set of points. Division into subsets can be performed in various 
ways, but in order to preserve the cyclic connectivity of the original 
structure, the subsets must be interlaced (for further details, see 
Appendix B.l). 

To illustrate these points, let us consider the hexagon shown 
in Figure 9a, for which we wish to evaluate the C3-symmetry 
measure. This is done as follows: (1) Divide the points into two 
sets of three points each (Figure 9a—one set is marked by the 
dashed line and the other by the solid line). Here, np - 6, ng = 
3 (E, C3, C3

2), and k = ns = 2 with / = 1 in both subsets. (2) 
Applying the folding-unfolding method to each set separately, 
obtaining two sets of perfectly C3-symmetric points. A perfect 
C3-hexagon is obtained (Figure 9b).9 (3) Evaluate S by 
considering all six vertices. The symmetry measure of the hexagon 
in Figure 9a with respect to C3-symmetry is 5(C3) = 5.52. This 
procedure can also be used for determining S(a), e.g. of a 
tetrahedron. This is of special interest because it is also a measure 
of achirality due to the existence of a symmetry plane (Part 4). 

(8) Using the same methods and notations as described in this subsection, 
one can reformulate the [2 + 2] concerted reaction example presented in Part 
1.' There we evaluated the symmetry of the configuration by evaluating the 
symmetry class of three reflective perpendicular planes. However, using the 
notations described here, one can, in fact, measure the ZJu-symmetry of the 
configuration. The /^-symmetry group consists of eight elements defined 
by a single C2 axis and two reflection planes: <r„ passing through the Ci axis 
and <TA perpendicular to the Ci axis. One has then n, = 8, np = 4, and / = 
2, and evaluating the symmetry measure follows the method described in this 
subsection. 

(9) Note that the folding and unfolding performed with the symmetry 
group at the origin (step 2). In Part 1 we described the analogous case by 
folding about the centroid of each set G; rather than about the centroid of all 
points (the origin). In Appendix A.2 we show the equality of these two cases. 
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Figure 10. Evaluating C3c-symmetry of a distorted tetrahedron (Figure 
la): (a) the four points are divided into two sets, one having three points 
(Pi, Pi, and Pt) and one having one point (Pi); (b) using the folding-
unfolding method, one obtains two sets, each being C3„-symmetric. The 
first set (three points) has each point on a reflection plane, and the second 
set (one point) is located on the C3 element. Figure Ic is thus obtained 
with S(Qv) = 14.49. 

In the above example we divided the points into subsets of ng 
points each. However, one may divide the points into sets having 
less than ng points, specifically, into sets having a number of 
points which is a divisor of ng. In this case we apply on each set 
the folding-unfolding method as described in Section 2.4 for the 
case ng = lnp. Extending this idea further, we need not divide 
the points into sets of equal size. For example, let us evaluate 
the S(Civ) of the tetrahedron in Figure la. The C3„-symmetry 
group has ng = 6 elements: E, Ci, C32, and all the multiplications 
of these elements by a. In order to evaluate the C3C-symmetry 
of the four points, one divides them into two sets; one having 
three points (P2, Pi, and P4 in Figure 10a) and one having one 
point (Pi in Figure 10a). For the first set, one has np = 3 and 
/ = 2 and the folding-unfolding is applied as in Section 2.4. In 
the second set, one has np = 1 and / = 6 and the folding-unfolding 
is applied as in Section 2.3. One obtains two sets, each being 
C3U-symmetric, the first set consisting of three points each on a 
reflection plane, and the second set consisting of a single point 
located on the rotation axis and on the reflection planes (Figure 
10b). After minimization one obtains S(Civ) = 14.49. We use 
a similar procedure to evaluate S(Du,) of Figure la. Here ng = 
12 and ns = 2 with one subset having np = 1 and / = 12 and the 
other set having np = 3 and 1 = 4, resulting in S(DiI1)

 = 19.7. 

Finally, we comment on the case where the connectivity 
constrains the division into sets so that no possible division exists. 
For example a cyclic connected configuration of six points cannot 
be divided into sets having a divisor of five points (for measuring 
Ci symmetry). To overcome these specific cases, one may 
physically duplicate or eliminate one or more of the given points. 
Though this has no physical or chemical interpretation, it does 
give a geometric solution. Thus in order to measure a triangle 
with respect to d-symmetry, one duplicates one of its vertices; 
and in order to measure C3*-symmetry of four points in space, 
one duplicates one of the points twice. The symmetrized objects 
will be with four and six vertices, respectively. 

3.3. Tetrahedricity of a Tetrahedron with a Central Atom. 
Most tetrahedral structures include a central atom. While 
branched connectivities are not the topic of this report (see Part 
4), we do bring here a preliminary case, that of the branched 
tetrahedron, for the sake of completeness of discussion of that 
structure. We replace, then, the polyhedral presentation of a 
tetrahedron with a branched connected set of five points Pj,..., 
Ps as shown in Figure 1 la, which models a tetrahedron with a 
central atom, and applying the CSM folding-unfolding method 
described in Section 3.2 to evaluate its Ti symmetry. The 
connectivity constrains the division of points into subsets and 
restricts the center point (Ps) to be a one-point set. We thus 
divide the points into ns = 2 subsets; {Pi, ..., P4} and [Ps]. The 
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Figure 11. (a) Distorted tetrahedron with a central atom, analyzed as 
a connected configuration of five points. The open circle marks the 
centroid of the configuration, (b) Closest 7>symmetric configuration. 

first subset has ng = 24, np = 4, and / = 6, and the second subset 
has ng = 24, /jp = 1, and / = 24. The closest symmetric 
configuration will have point P5 relocated to a position where all 
24 of the Ti symmetry group elements leave it in place. The only 
such position is at the origin (centroid of the configuration marked 
as an open circle in Figure 11), where all symmetry planes and 
axes intersect. Points Pi,..., P4 will be relocated to form a perfect 
7>symmetric configuration of four points; i.e., each point will 
lie on a C3 rotation axis (see Figure 1 lb). S(Ti) (or any S(G)) 
is then calculated by considering the full set of Pi, ..., P5. 

4. Further Examples 
4.1. Distorted Tetrahedra: Reanalysis of Murray-Rust, Biirgi, 

and Dunitz.3 Our discussion is not complete without mentioning 
thestudy of Murray-Rust etal. on distorted Td? Their method3'10 

is based on evaluation of the distortion vector that creates the 
given configuration from an apriori chosen reference structure. 
The coordinates of the distortion vector are given with respect to 
a set of basis vectors, denoted the symmetry displacement 
coordinates. Each such symmetry coordinate is a linear com­
bination of the internal coordinates of the reference structure 
which transforms according to irreducible representation of the 
point symmetry group of the reference structure. The symmetry 
of a distorted configuration is then given by a vector, i.e. a collection 
of symmetry displacement coordinate values. To intuitively 
understand the coordinate values and the measure of symmetry 
thus obtained, one needs to analyze the values with respect to 
each other and with respect to the symmetry coordinates they 
correspond to. Thus for the distorted tetrahedral structure of 
PO4 found in Cd2?207 with the reference structure being a perfect 
tetrahedron with arm lengths of 1.534 A, the authors obtained 
a set of 10 symmetry displacement coordinate values.11 

We now analyze the same distorted phosphate tetrahedron 
using our method. We first recall that our method evaluates the 
distance from tetrahedricity and not from a specific tetrahedron 
and that, rather than reporting the deviation in terms of a table 
of many coordinates, we provide a single S(Td) value. To obtain 
it, the 3D position coordinates of the four oxygens and phosphorus 
were taken from ref 12 (also used by Biirgi et al., p 1790 in their 
paper) as: 

P1 = (CO 0.0 1.645) 

P2 = (CO 1.518 860 -0.347 028) 

P3 = (-1.286 385 -0.700 083 -0.391 603) 

P4 = (1.179 085 -0.755 461 -0.372 341) 

with an additional center point 0.0. We apply the folding method 
as described in Section 3.3. The symmetry measure obtained in 
this example is S(Tj) = 0.17, and the closest symmetric shape 
is a regular tetrahedron with arm length 1.537 A. 

(10) See also: Luef, W.; Keese, R.; Biirgi, H. B. HeIv. CMm. Acta 1987, 
70, 534 and earlier references cited therein. 

(11) Following the notation in Burgi et al.:3 

Di(Ai) = 0.016 A D211(E) = -2.59° D^(T2) = -6.84° 
D30(T2) = 0.019 A Du(E) = 1.89° Dtb(T2) = -8.37° 
D3b(T2) = 0.077 A D6(Ai) = -0.66° Di0(T2) = -5.81° 
D30(T2) = 0.010 A 

(12) Calvo, C. Can. J. Chem. 1969, 47, 3409-3416. 
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b. c. 
Figure 12. Modeling a Walden-type inversion: (a) a perfect tetrahedral configuration of four points undergoes inversion as shown; (b) the intermediate 
planar configuration; (c) the inverted tetrahedron. 

In a further example, Murray-Rust et al. used the symmetry 
coordinates to evaluate the threefold axes of 1-methyl-1-
silabicycloheptane (Section 5 in ref 3). They found that the 
distorted SjC4 structure (Figure 5 in ref 3) is better described 
with the threefold axis passing through one vertex (point Ci in 
their notation) rather than through another (C2 in their notation). 
Using the CSM method with respect to C3„-symmetry, we easily 
support their conclusion as follows: Given the coordinates 

P1 = C1 = (0.0 0.0 1.645) 

P2 = C2 = (0.0 0.874 619 71 -0.484 609 62) 

P1 = C3 = (0.751 286 05 -0.393 388 92 -0.529 919 26) 

P 4= C 4 = (0.751 286 05 -0.393 388 92 -0.529 919 26) 

with Si at the origin, the 5(C311) of the configuration was calculated 
by the method described in Section 3.2 and found to be S(Ci0) 
= 0.02 when the threefold axis passes through point Ci, compared 
to S(Ci0) = 1.16 when the threefold axis is constrained to pass 
through point C2. Using the folding method, we can also measure 
the C3(,-symmetry of the configuration with the constraint that 
three of the configuration points are equatorial. In this case the 
.S value increases to 5.26, with the threefold axes passing through 
point C2. 

4.2. Fluxional Molecules. Our method allows one to follow 
continuous symmetry changes that fluctuating molecules (amines, 
phosphines, metal complexes, etc.) experience through the flip-
flopping between configurations. As a general case we again 
take the tetrahedron and follow its symmetry behavior in a 
Walden-type inversion, leading from one enantiomer to the other 
through a planar transition configuration. Let us then consider, 
for the sake of simplicity of demonstration, a perfect tetrahedral 
configuration of four points with arm length 1 (Figure 12a) which 
is inverted to the configuration in Figure 12c through the 
configuration in Figure 12b. The inversion process is modeled 
by rotating three of the points (P1, P3, and P4) about the origin 
toward the inverted positions (P2', Pi', and P4') and by linearly 
moving the fourth point (Pi) to its inverted position (P1'). The 
movement from the initial tetrahedron to its inverted configuration 
is considered as one cycle. We evaluate the symmetry measure 
of the configuration during the inversion process with respect to 
7>symmetry and with respect to a-symmetry along the plane 

(13)Theplanar structure representing S(<r) = 33.33 is obtained by projecting 
the perfect tetrahedron onto the plane. Thus (Figure 12) point Pi projects 
onto the origin, and point P2, having coordinates (0, 2V2/3, - ' /3). projects 
onto (0, 2\/2/3, 0), and one obtains an arm length of 2V2/3. The 
tetrahedral structure representing S(Ti) = 0.25 is obtained by moving points 
of the planar configuration (Figure 12b). The point at the origin moves 
perpendicular to the plane a distance X. The three points each move so that 
they are at a distance X from the origin and at an angle 109.47° to the 
perpendicular (or 19.47° to the plane). Using the law of cosines, one has the 
distance moved by each of the three points equal to 1 + X1 - 2X cos( 19.47) 
or 1 + X2 - 4v2Jf/3. Since the symmetry measure minimizes the distance 
squared moved by the points, one must minimize 4X2 - sVlX + 3. Thus one 
obtains at minimum X = 1/V2. 

Cycles 

Figure 13. Symmetry measures of the tetrahedron in Figure 12a during 
a Walden inversion with respect to 7>symmetry (solid line) and with 
respect to cr-symmetry along the plane perpendicular to the vector from 
the origin to Pi (dashed line). 

perpendicular to the vector from the origin to Pi. The results are 
displayed in Figure 13. The solid line displays the symmetry 
measure with respect to 7>symmetry, and as can be seen, the 
configuration has minimum value (S(T1/) = 0) at the start and 
end of the cycle and a maximum symmetry measure (S(Td) = 
25.0) at midcycle when the configuration is restricted to a single 
plane (Figure 12b). The dashed line in Figure 13 displays the 
symmetry measure with respect to mirror-symmetry along the 
prescribed plane. The minimum symmetry measure (S(<r) = 0) 
is obtained at midcycle when the configuration is restricted to the 
symmetry plane (Figure 12b), and the maximum symmetry 
measure (S(a) = 33.33) is obtained at the beginning and end of 
the cycle when the configuration is perfectly tetrahedral. An 
interesting observation is that the maximal 7>symmetry measure 
is smaller than the maximal mirror-symmetry measure; in other 
words, the planar structure (Figure 12b) is closer to tetrahedricity 
(and not necessarily to the original tetrahedron of arm length 1) 
than the tetrahedron is to a plane. The tetrahedron closest to the 
shape having the maximal (S( Td) = 25.0) value has an arm length 
of 1 /y/l, and the planar structure representing S(a) = 33.33 has 
an arm length of 2Vl/2, (these values are obtained as described 
in note 13). We thus demonstrate another important feature of 
our approach: it can be used not only for evaluating symmetry 
content of nonsymmetric shapes but also for evaluating distance 
between perfectly symmetric shapes. 

4.3. The Vibrating Tetrahedron. The CSM method can also 
follow continuous symmetry changes due to vibrations. We 
demonstrate it on a vibrating tetrahedron. The model vibration 
is that of a perfect tetrahedron in which one or more of the vertices 
moves along the vector connecting the origin to the tetrahedral 
points (see Figure 14) in a cyclic sinusoidal movement. On this 
dynamical object we now perform an SX Td) analysis. For example, 
Figure 14 shows the results for a vibration that extends two arms 
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Cycles 

Figure 14. 7>symmetry measure of a vibrating tetrahedron. In this 
model the vibration extends two arms to a maximum of 25% of the original 
arm length and the other two arms to a maximum of 25%, with a phase 
delay of 180°. Insert: The vibration motion. 

Synmetry Measure 

Figure 15. Probability distribution of the symmetry measure S(Td) of 
a vibrating tetrahedron with random phase shifts associated with each 
arm. The distributions are given for several values of the maximum 
extension of the vibrations: 25, 30,40, and 50% of original arm length. 

to a maximum of 25% of the original arm length and the other 
two arms to a maximum of 25% at a phase delay of 180°. The 
CSM behavior indeed follows physical intuition: the symmetry 
measure reaches a maximum at the two extremes (two arms 
extended and two arms contracted to the maximum) and returns 
to a minimum at midcycle when the configuration is the original 
tetrahedral configuration. The overall shape of the curve of S 
follows the sinusoidal shape of the vibration. 

We now take the vibrating-molecule example to introduce yet 
another concept: the probability of finding a dynamic molecule 
at a certain S(G) value. Thus, consider, for instance, a tetrahedron 
with a central heavy atom and with four light atoms anchored 
to it. Here, the vibration of each of the four arms is only weakly 
linked to the others. For the sake of argument, let us assume that 
the vibrations are all of the same frequency but are independent 
of each other in terms of phase. Then, the vibrating tetrahedron 
can assume any phase locking, where each arm vibrates with a 
random phase shift relative to the others. It is then evident that, 
for such a dynamically random object, one is better off by 
describing its symmetry in terms of a probability distribution to 
find it at a certain S value. Given various maxima extensions of 
the tetrahedral arms during the vibration and fixing the central 
point, we evaluate S(T11) for different randomly chosen phase 
shifts and plot the probability distribution of the symmetry 
measure. Figure 15 shows the result for several values of the 
maximum extension of the vibrations (evaluation was performed 
on 200 samples for each maximum extension value). As can be 
seen, the distribution of S values is more widespread when the 
vibration has a greater maximum extension, the probability of 
finding the molecule at perfect Td decreases, and the expectation 
value of 5 increases. 

4.4. Rotating Tetrahedra: Ethane. Another basic mechanism 
which strongly affects molecular symmetry is intramolecular 

Figure 16. Modeling the C-C rotation in ethane: (a) only the right hand 
tetrahedron moves; (b) the cycle starts with the eclipsed Dy, rotamer 
(Figure 17); (c) one of the six chiramers (see text); (d) the Z ^ staggered 
rotamer. 

a. 53h" 

Figure 17. (a) Periodic variations in the symmetry measure of Dn, and 
Did for rotating ethane. A sinusoidal potential is also shown, (b) Detail 
of a. Notice the 30° and 90° chiramers. 

rotation. Consider, for instance, one of the most basic examples, 
namely, the rotation of the two ethane tetrahedra around the 
C-C bond (Figure 16). Current wisdom allows an exceedingly 
poor description of that process from the symmetry point of view: 
Ethane is Du when staggered (Figure 16d), Dy, when eclipsed 
(Figure 16b), and Z)3 anywhere in between, including the rotamer 
which is only 1 ° away from any of the extremes. Doesn't physical 
intuition dictate that it is more natural to ask about that 1c rotamer 
how much Dih or D-n it contains or, for that matter, how much 
Du and D3d exists at any point in a full 360° cycle? As has 
already become evident throughout this paper, the CSM method 
allows one to select any symmetry group and follow its gradual 
changes along such a full 360° cycle of rotation. We demonstrate 
it on two perfect tetrahedral structures connected along one of 
the tetrahedral arms and rotating with respect to each other around 
the connecting arm. We model this by stabilizing one of the 
tetrahedra and rotating the other, beginning the cycle with the 
two tetrahedra perfectly aligned (eclipsed) and rotating the second 
tetrahedron anticlockwise. Figure 17 displays the result where 
the S value is given as a function of the cycle. (Figure 17a shows 
a full 360° cycle, and Figure 17b shows a detail.) The following 
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Symmetry Measure 

Figure 18. C-C rotation in ethane presented in the plane of potential vs 
symmetry measure, Du and D3n. 

observations are made: (1) The D3n profile of the rotation reaches 
a higher 5 value than the Du profile. This is a reflection of the 
fact that the D3rgroup contains more elements than the D3<r 
group. (2) The maximal S(Du,) value is at the 60° staggered 
rotamer which is the farthest away from the perfect Dy, eclipsed 
rotamer (0°, S(D3/,) = 0). Three such maxima are observed in 
a full cycle, corresponding to the three staggered rotamers. (3) 
The D3J behavior is very interesting and points to the importance 
of a rotamer (Figure 16c) which is neither eclipsed nor staggered, 
but in between, at 30° + n-60". The S(Du) value is zero both 
for the staggered and for the eclipsed rotamers, because Du is 
a subgroup OiD3n. (The inequality 5(Gi) ^ S(G2) always holds 
if Gi is a subgroup of G2.) Indeed, up to 30°, S(D3h) = S(Du), 
but beyond that and up to 90° they depart. To understand it, 
we recall that the CSM method searches for the minimal 
movement to attain the desired symmetry, which in the case of 
Du is the eclipsed rotamer up to 30°, in contradistinction with 
the current convention which attaches Du only to the staggered 
rotamer. However, beyond 30° (and up to 90°) the staggered 
rotamer is indeed the closest to Du- We term these special chiral 
(!) rotamers at 30° + n-60" chiramers (Figure 16c). There are 
six of these in a full cycle, compared to three eclipsed and three 
staggered (which are of course achiral). 

Finally, we wish to make a brief preliminary comment on what 
seems to us an important application of our approach: Many 
thermodynamic and kinetic quantities vary cyclically with internal 
rotations. A commonly presented quantity is the (repulsion) 
potential. It is then interesting to see how this property varies 
with the symmetry rather than with the traditional torsion angle. 
The results for a model sinusoidal potential (Figure 17) are shown 
in Figure 18. Let us first detail how the potential follows this 
new process coordinate: The D3/, potential line varies smoothly 
with S, starting at the eclipsed S = O value and dropping to zero 
potential at the staggered S = 22.22 value; then it reverses and 
climbs back up to the maximum potential, completing 120° of 
the cycle. This drop and rise in potential along the symmetry 
coordinate is repeated continuously, completing a full 360° cycle. 
The Du potential line behaves differently: up to S = 5.95 it 
follows the D3), line, but then as the potential continues to drop, 
so does the S value, reaching the minimum potential at the 
staggered 5 = 0 value (the line then climbs back up). Perhaps 
most notable is that the lines of the two symmetry groups bifurcate 
at the 30° chiramers. What does such symmetry/potential 
bifurcation mean? In general, it may mean that for symmetry-
governed processes, such a crossing point is where the process 
may select to proceed one way or the other depending on which 
symmetry is preferred. 

5. Summary 
We have shown how to study symmetry as a continuous 

property. Using the CSM method, it is now possible to evaluate 
quantitatively the amount of symmetry in a nonsymmetric 
configuration, to find the closest symmetric shape of a given 

configuration, and to compare symmetries of different config­
urations, all of these both in static and dynamic structures. The 
method is general and can be used to evaluate any symmetry of 
any configuration. We presented many examples and applications 
of the CSM method, concentrating on tetrahedral structures and 
evaluating the amount of tetrahedricity (TJ) and other symmetries 
in nonsymmetric tetrahedra, and on continuously changing 
symmetries in fluctuating, vibrating, and rotating tetrahedra. 
Subsequent reports deal both with further extensions of the CSM 
approach to other general symmetry issues and with the transition 
from CSM models to real systems. 
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Appendix A. Mathematical Derivations 
A.l. Orbits. We first review some basic definitions required 

for our proofs and derivations. The orbit of x under a group G 
is the set {gx\g G G\. x and y belong to the same orbit if y = 
gx for some g G G. Given a finite group G and given an ordering 
of its elements, g\, g2, ..., gm, the orbit under G of a point x in 
Euclidean space is X1,..., xm such that x, = g,x for / = 1,..., m. 
If g\ = e (the identity element of G) then x,- = g,Xi for / = 1,..., 
m. 

Lemma 1. The centroid of an orbit of finite point-symmetry 
group G is invariant under G. 

A point x G A" is a general point (or is in general position) with 
respect to G if for all g £ G, g T± e (where e is the identity in 
G) we have gx ^ x. 

Lemma l.Ifx is a general point with respect to G, then all 
points in the orbit of x are general points. Furthermore for glt 
g2 E G, g, 9± g2 =* g,X J^ gxX. 

Thus if x is a general point, its orbit contains N(G) different 
points (N(G) is the number of elements in group G). 

Lemma 3. If the orbit of x has a point in common with the 
orbit of y under G, then the two orbits are equal. 

For any x G X the group Gx = {g G G\gx = x} is called the 
isotropy subgroup of G at x and it contains all elements of group 
G that leave x invariant. If x is a general point, its isotropy 
subgroup contains a single element of G—the identity, i.e. G* = 
{e}. 

Lemma 4. IfG is finite, the number of different points in the 
orbit containingx is N(G)/N(G*). (Proof is immediate from the 
1-1 relationship between points in the orbit of x and the left 
cosets of G*. Each left coset of G* consists of all elements of G 
that map x to a specific point y.) 

A.2. Proof of the Folding Method. As described in Section 
1, the CSM of a set of points with respect to a given symmetry 
group G is evaluated by first finding the set of points which is 
G-symmetric and which is closest to the given set in terms of the 
average distance squared. We must thus prove that the folding 
method indeed finds the closest symmetric set of points. 

Given a finite point-symmetry group G centered at the origin 
and an ordering of its m elements {g\ = e, ..., £mj and given m 
general points P\, ..., Pm, find m points P\, ..., Pn, and find a 
rotation matrix R and translation vector w such that Pi, ..., Pn, 
form an ordered orbit under G'(where G'is the symmetry group 
G rotated by R and translated by w) and bring the following 
expression to a minimum: 

m 

5>,-*J|2 (3) 
i=l 

Since G has a fixed point at the origin and G'has the centroid 
of orbit P1 as a fixed point (see Lemma 1), we have that w is the 
centroid of orbit P1-: 

1 m 

w = -TP1 (4) 
(Note that, in the cases where the fixed points of G form an axis 
or plane, w can be any vector moving the origin to the (rotated) 
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axis or plane passing through the centroid of orbit P,. Thus also 
in these cases w can be considered the centroid of orbit P1-.) 

The points Pi, ..., Pm form an orbit of G', thus the following 
must be satisfied: 

P1 = g/P, = Xg1R(P1 -w)+ w i = 1,..., m (5) 

where g{ is the matrix representation of the ith symmetry element 
of G' and is equal to the ith symmetry element g, of G rotated 
by R and translated by w. 

Using Lagrange multipliers with eqs 3-5, we must minimize 
the following: 

m m 

Jy1 - All2 + £>,'(*, - Xg1R(P1 -W)-W) + 

where e and X,- for i = 1, ..., m are the Lagrange multipliers. 
Equating the derivatives to zero we obtain 

1=1 

JT(P1-P1) = o (6) 

and using the last constraint (eq 4) we obtain 

1 m 

w = ~Y,Pj (7) 
mpf 

i.e. the centroid of Pi, ..., Pm coincides with the centroid of Pj, 
..., Pm (in terms of the symmetry measure defined in Section 1, 
the centroid of a configuration and the centroid of the closest 
symmetric configuration are the same for any point-symmetry 
group G). 

Noting that R'giR for i = 1,..., m are isometries and are distance 
preserving, we have from the derivatives 

m m 

2>/ xp, - p.) = E* w , - ̂  = ° 
i= i i= i 

Expanding using the constraints we obtain 
m m 

mPx -mw = ^Xg1'RP1 - J^Xg-Rw 
1=1 

or 

1 m 

P1-W =-YXg1
1R(P1-W) (8) 

m~ 
The geometric interpretation of eq 8 is the folding method, thus 
proving that the folding method results in the G-symmetric set 
of points closest to the given set. 

Given n = qm points (i.e. q sets of m points) [P1J,..., PnJ] for 
j = 1,..., q, we obtain the result given in eq 8 for each set of m 
points separately, i.e. fory = 1, ..., q: 

1 
P1J-W =-YXg1

1R(P/-w) (9) 

where w = 1/WLJM1EJI1P/ is the centroid of all n points. 
The folding method for the cases described in Section 2.4, 

where the number of points is a divisor of the number of elements 
in the symmetry group (ng = lnp), is similarly derived: Given n 
points Pi,..., Pn, a finite point-symmetry group G centered at the 
origin and having m = In elements, and a subgroup G1 of G 
having / elements and an ordering {Gi, ..., Gn) of the left cosets 
of Gi, we would like to find n points P1, ...,Pn and find a rotation 
matrix R and translation vector w such that P1, ...,Pn form an 
ordered orbit under G' (where G' is the symmetry group G rotated 
by R and translated by w) such that Gi leaves P1 invariant and 

the following expression is brought to a minimum: 

EK-AI2 

As before we have 

1 " 

(10) 

(11) 

Additionally the elements of Gi (denoted gn,..., gn) leave P1 in 
place; thus we have 

P1= Xg1JR(P1-W)+ w for 7 = 1 , . . . , / (12) 

and since Pi, ..., Pn form an orbit of G', we have for each coset 
G1 

P, = Xg1JR(P1 -w)+w for / = 1 nj = 1 / (13) 

Using Lagrange multipliers with eqs 11-13, we must minimize 
the following: 

n I 

2 > , - p,.|p+EEX<M - *v<*i - w) - w) + 
/= i 1=1 >=i 

where e, Xy for i = 1, ..., n and j = 1, ..., / are the Lagrange 
multipliers. Solving as before we obtain 

1 " 1 " 
(14) 

and 

1 n I 

P1-W =-YYXg0
1R(P1-W) (15) 

The geometric interpretation of eqs 14 and 15 is the folding method 
for the case described in Section 2.4 where each point P,- for i = 
1, ..., n is duplicated times. Thus we proved that the folding 
method results in the G-symmetric set of points closest to the 
given set. 

A.3. Finding the Optimal Orientation in 2D. Following the 
derivation in Appendix A.2 we derive, here, an analytic solution 
to finding the orientation (rotation matrix R) which minimizes 
eq 3 under the constraints given in eqs 4 and 5. In Part I1 

(Appendix A.2) we gave the derivation for the specific case of 
the D1 group having the two elements {£, a). 

In 2D there are two classes of point-symmetry groups: the 
class Cn having rotational symmetry of order n and the class Dn 
having rotational symmetry of order n and n reflection axes. The 
problem of finding the minimizing orientation is irrelevant for 
the C„-symmetry groups, and R is usually taken as / (the identity 
matrix). We derive here a solution for the orientation in the case 
where G is a D„-symmetry group. 

The 2« elements of the Z)„-symmetry group (gi,..., gin) are the 
n elements E, Cn

1, Cn
2,..., Cn"-1 (gu ..., gn, respectively) and the 

n elements obtained by applying a reflection a on each of these 
elements: a, <rCn

l, cCn
2,..., <sCn"-x (gn+1,...,g2n, respectively). We 

denote the orientation of the symmetry group as the angle 6 
between the reflection axis and the y-axis. Thus 

R-I 
cos 6 sin d\ 

^-sin 0 cos 6) 
Without loss of generality we assume the centroid (w) is at the 
origin. The matrix representation of the rotational elements of 
Z>„istheng/ = .R'g;.R = £,for(= \,...,n. The matrix representation 
of the operation a is given by 
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Rf=R'gn^R = 
/cos 0 -sin0\/-l O\/cos0 sin 0\ _ /-cos 20 -sin 20\ 
I sin 0 cos 8 j \ 0 1 j\-sin 0 cos 0/ ~ \-sin 20 cos 20 / 

and gi = Rjgi-„ for i = n + 1,..., 2«. Thus from Appendix A.2 
we must minimize the following over 8: 

i= i i - i 

In i In 

- Eta'"^-T-LS/'^I2 

*=1 ^" /=1 

- E I I X > / ^ + E * * / - V 2 " * / ^ 
y'=n+l i ' = l f = l 

2 

(16) 

Denoting by X1, yt the coordinates of the point g{ 'P,- and taking 
the derivative of eq 16 with respect to 8 we obtain 

tan 20 = 

n 2n 

E E (W + x?d 
i'\ j=n+l 

n In 
(17) 

E E (*<*/-^;) 
i-i J-n+l 

which is an analytic solution for the 2D case of orientation. 
However in higher dimensions a minimization procedure is used 
(see Appendix B.4). 

B. Minimization 
In the general case, the folding-unfolding method depends on 

minization of the S value over (1) all divisions of the given points 
into sets ns (see Section 3.2), (2) all divisions of the symmetry-
group elements into sets (denoted G( in the text—see Section 
2.4), (3) all orderings of the sets G1, and (4) all positions and 
orientations of the symmetry group. The minimization problem 
seems very forbidding; however, a closer inspection shows that 
the complexity of the minimization problem can be greatly reduced 
and, in some cases, even an analytic expression can be given. 

B.l. Divisions of the Given Points into Sets. Dividing the 
points into sets allows one to apply the folding method on each 
set independently; i.e., each set is transformed into a G-symmetric 
configuration of points. Thus the points of a set must be "similar"; 
i.e., if the points were colored, weighted by mass, or associated 
with any other varying feature, we would expect points of each 
set to have the same feature. In this paper we restrict ourselves 
to geometric features and the only "similarity" between points is 
their connectivity. Thus, dividing the points into sets is constrained 
by the connectivity of the points: each set contains points having 
the same connectivity. We delay the general discussion of the 
division rules to the next report and concentrate here on the special 
case of cyclic connectivity, which is of relevance to most examples 
in this report. In this case all points have the same connectivity 
and seem to impose no constraints on the division of points into 
sets. However, considering symmetric configurations of cyclic 
connectivity, we find strict restrictions on possible divisions of 
points into sets: In order to preserve the original connectivity in 
the final symmetrized object, the sets must be interlaced for Cn-
symmetries and inversely interlaced for .©,,-symmetries. For 
example Figure 19a shows a C3-symmetric configuration of 12 
points. The sets of 3 points marked as • , O, and D are C3-
symmetric, and all three sets are interlaced. In the case of Z)4-
symmetry shown in Figure 19b, the interlacing is inversed in 
order to account for the reflection symmetry. Thus, instead of 
finding the cyclic order t O D t O D 9ODtOD, every other 
run is inverted: • O DD O • , ..., • ODD O • . Thus given a 
nonsymmetric cyclic configuration of m points, we greatly reduce 
the possible divisions into sets: for C„-symmetry only one division 
is possible, and for Z>„-symmetry only m/2n divisions are possible. 

C3O 

Figure 19. Divisions and orderings: (a) C3-symmetric configuration of 
cyclic connected points. Each set of differently marked points (#,0, and 
D) is C3-symmetric. Each set is interlaced within the other sets, (b) 
IVsymmetric configuration of cyclic connected points. Each set of 
differently marked points (•, O, and D) is ̂ -symmetric. Each set is 
inversely interlaced in the other sets, (c) C6-symmetric configuration of 
cyclic connected points and the associated symmetry element, (d) Z)4-
symmetric configuration of cyclic connected points and the associated 
symmetry element. 

B.2. Divisions of the Symmetry-Group Elements into Sets. This 
step of the minimization should be performed for each set of 
points separately; however in practice the division is usually the 
same for all sets having the same number of elements. 

Given a symmetry group of ng elements and given a set of np 
points, the elements of the group must be divided into np sets, 
each having a divisor of / = ng/np elements (Step 3 in Section 
2.4). As described in Section 2.4 one of the sets (Gi in the text) 
contains all group elements that leave a point in place. All other 
sets are constructed and dependent on that set. Thus we must 
actually minimize over all possible selections of / elements that 
leave a point in place. Considering the symmetry groups, we find 
that this greatly restricts the possible divisions of symmetry 
elements into sets. For example in the case of four points and 
the 7>symmetry group, there is only one possible division of the 
elements into sets (the division given in Section 3.1). 

B.3. Ordering the Sets of Elements. Given sets of elements 
(Gi), we must minimize over all possible orderings of the sets. 
Following the ordering of the sets, the folding method associates 
each set with a point. Thus, as in Section B.l, here too the 
connectivity of the points constrains the possible orderings of the 
element sets. For example consider the C6-symmetric configu­
ration of cyclic connected points in Figure 19c. The connectivity 
constrains the ordering of the elements of the C$ group to be e, 
C31, ..., C35 or any cyclic permutation of the sequence or any 
reflections of the sequence (where e is the identity element and 
C3' is the rotation element of 2iri'/6 radians counterclockwise). 
The connectivity of the points in Figure 19d constrains the ordering 
of the six elements of the Z)3 group to be e, <r, C3, C3CT, C3

2, C3
2CT 

or any cyclic permutation of the sequence or any reflections of 
the sequence (where C3'' is the rotation element of 2«7'/3 radians 
counterclockwise). Further simplification is obtained when one 
notices that the folding method applied under any of the cyclic 
orderings gives the same result. Thus only one of the cyclic 
orderings and its reflected ordering need to be considered. Thus, 
for cyclic configurations the possible orderings of the element 
sets are reduced to two. 

B.4. Positions and Orientations of the Symmetry Group. A 
priori it seems that the most difficult stage in the minimization 
process is the sreening of all possible positions and orientations 
of the symmetry group. However even this stage can be simplified 
as follows: We have proven that the minimum is obtained when 
the symmetry group is positioned at the center of mass of the 

file:///-sin
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points to be measured (i.e. all lines and points of rotation and all 
lines and planes of reflection must pass through the centroid of 
the configuration) (Appendix A.2). Thus, steps 1 and 2 in the 
folding method (Section 2.3) eliminate the need to minimize over 
all positions of the symmetry group, so that we only need to 
minimize on the orientation. Considering the orientation of 
symmetry groups in 2D, we find that the orientation of 
C-symmetry groups (having only rotational elements about a 
point) is irrelevant. For those symmetry groups in 2D having 
reflections, the minimization over all orientations is reduced to 
an analytic equation (see Appendix A.3). In 3D, minimizing 
over all orientations of a symmetry group is a three-dimensional 
problem. However, in some cases one can reduce the complexity. 
For example in the 7>symmetry case one can reduce the 
complexity to two free parameters (see Appendix C). Further­
more, one should notice that minimization need not be performed 
over all orientations, since, being a symmetry group, some 
orientations leave the group invariant (up to order). Thus, in 
practice, one needs to minimize only over a cone of possible 
orientations. To minimize, the gradient descent method is used: 
One initially selects a single possible orientation as the current 
orientation. At each step one compares between the S value for 
the current orientation and that for neighboring orientations. 
The current orientation is changed to be that orientation which 
gives the lowest 5" value. If the current orientation does not change, 
the neighborhood size is decreased. The process is terminated 
when neighborhood size reaches a predefined minimum size. The 
current orientation at the end of the process is taken as the 
orientation which minimizes the S value. 

C. Tetrahedral Minimization 
As described in Section 3.1, the evaluation of SXr^-symmetry 

requires minimization over all orientations of the 7>symmetry 
group. In general, orientation is a three-parameter problem (pitch, 
roll, and yaw). However, in the case of 7>symmetry of a 
tetrahedron, one can reduce the problem to a two-parameter 
problem: given the direction of one of the C3 axes of the symmetry 
group, one can determine the direction of the other axes 
analytically. This determination is a two-parameter problem: 
Given four points in 3D, P1, Pi, Pi, and P4, and given a unit vector 
W4 representing the direction of the C3 axis, find four points P1, 
Pi, Pi, and Ps, and three unit vectors W1, W2, and W3 such that P, 
lies on the direction vector w,- (j = 1, ...,4). The points Pi, ..., 
P4 form a 7>symmetric configuration, and the following is 
minimized: 

3 ||P-(P1W4)W4If 3 
(19) 

I>,->J|2 
i = l 

Denoting by R the rotation matrix of 2ir/3 radians about w3 and 
noting that Rwi = W1 and R2W3 = W1, one uses the Lagrange 
multipliers and minimizes the following: 

| |p4 - W4H
2 + HP1 - W1Ip + HRp2 - W1H2 + WR2P3 - W1Ip + 

X,«w„ W1) -I)-HX2C(W1, W3) - V 3 ) 

where X1 and X2 are the Lagrange multipliers and A is a constant 
such that P, = hwj. The second constraint stems from the fact 
that the Wj are C3 axes of the 7>symmetry group. Deriving and 
equating to zero, one obtains 

6h2 + 2X1 
X2 = 6/i(P, W4)+ L 

X1 = -3h2 ± - ^ ( ( P , P) - (P, W4)
2)1/2 

2VI 

w , = • 

6hP - X2W4 

6h2 + 2X1 

(18) 

and 

where P is the average of the rotated vectors, i.e. P = '/3(^1 + 
RPi + R2P3). Notice that the direction of W1 is independent of 
h. The latter is evaluated as 

h = ^3(P,wl) + (P4,w4)) 

The geometric interpretation of this result is as follows. Given 
a W4 direction, perform the following steps: (1) fold points P1, 
Pi, and P3 about the W4 axis; (2) average the folded points, 
obtaining a single point P; (3) project P onto the cone of possible 
W1 vectors (i.e. a cone of vectors x such that <x, w4)/||x|| = '/3)1 
obtaining point W1', and assign W1 = wi'||wi'|| (This step is the 
geometric interpretation of eq 19.); (4) project P4 onto W4, 
obtaining W4'; (5) fold point W1' toward w4'; (6) average the folded 
W1' and W4' using a weighted average (point W1' is itself a folded 
average of three points—step 2), obtaining a single averaged 
point P4, P4 = (3W1' + w4')/4; (7) unfolded point P4 toward W1', 
obtaining P1; (8) unfold point P1 about the W4 axis, obtaining P2 
and P3. A perfect 7>symmetric set of four points is obtained. 

D. The Bounds of S Values 

Following the definition of the CSM in eqs 1 and 2 in Section 
1, the S values are limited to the range 0,..., 100 or S'values are 
limited to the range 0, ..., 1. The lower bound of 5" is obvious 
from the fact that the average of the square of the distances 
moved by the object points is necessarily non-negative. The upper 
bound of the average is limited to 1, since the object is previously 
normalized to a maximum distance of 1, and by translation of 
all vertex points to the center of mass, a symmetric shape is 
obtained. 

The upper bound on 5 can be tightened for specific cases. For 
instance in 2D one can show that the maximum S' value for a 
triangle, with respect to C3, is '/3: Consider the three vertices 
of a normalized triangle Pi, P2, and P3 in 2D (the centroid is at 
the origin). Without loss of generality assume P1 = (0, 1) and 
that P2 has a positive x-coordinate and denote by (x, y) the 
coordinates of P2. Given the constraint that the centroid is at the 
origin, one has P3 = (-x, - 1 , -y). In fact P2 is limited to a circle 
sector due to the centroid constraint and the normalization 
constraint (limiting all P,'s to be in the unit circle). Given these 
notations, we have that the S' value of the triangle with respect 
to C3-symmetry is given by 

j(l+y2 + y-V3x + x2) 

Considering the limited range of the P2 coordinates, the maximum 
value is obtained when P2 = (0, 0) or P2 = (0, -1) (which are 
equivalent cases) and the maximum S'value is l/3. 

The maximum S'value is actually obtained for extreme cases 
such as a polygon of m vertices (w = qn) whose contour outline 
a regular q-gon (i.e. every qth vertex of the w-gon concides with 
a vertex of a regular q-goxi). For details, see the Appendix in 
Part I.1 

Note Added in Proof. Two relevant reports appeared this year: 
Mezey has proposed in /. Math. Chem. (1992,11, 27) symmetry 
deficiency measures, applicable to both discrete and continuous 
problems, and Cammi et al. used symmetry coordinates to analyze 
tetrahedral and octahedral distortions (Cammi, R.; Cavalli, E. 
Acta Crystallogr. 1992, B48, 245). Chirality measures have 
continued to attract attention this year: Cauvin, R. J. Phys. 
Chem. 1992,96,4706. Kuz'min, V. E.; et al. /. Phys. Org. Chem. 
1992, 5, 295. Part 4 in our series is devoted to chirality as an 
integral part of the generalized treatment of symmetry described 
in this report. 


